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Read Between the
Lines

® Where do the semantics of a system live’
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Applicative Evaluation

* Evaluate arguments
* Syntax specifies order

* Apply arguments to functions

® No notion of time

* Almost: in Clojure, CL args eval left to right
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Reactive Evaluation

* Maintain dependency order of processes

* Evaluation triggered by availability of
arguments

* |Instead of by invocation of parent

* Programs look/feel applicative

* We don't need threads (necessarily)



Browsers: bells, whistles, gotchas

* JavaScript event loop

* Callbacks everywhere
* DOM~Becument Object Model

e DOM elements cs bute=ta_application state, but
are.peoor variables: they're mutable Giobe

see hlisp! https://github.com/tailrecursion/hlisp-starter


https://github.com/tailrecursion/hlisp-starter

FRP: Objects in Play

* Event Streams

e Sources of zero or more values over time

* Incoming events trigger activity in whatever is
listening

* Behaviors (a.k.a. Signals)

* Always-valued boxes, -like

* Value can be derived from a function applied to 1 or
more “constituent” objects

* Application of this function is triggered by activity in
constituent objects



FRP: Fundamental Operations

e Event Streams

e filter, map, merge etc.

e startsWith: return a new Behavior backed by the
stream, provided an initial value

e Behaviors

e 1ift: return a new Behavior provided 1 or more
other objects and a function

e changes: return a new Event Stream carrying a
Behavior's value over time



FRP with Flapjax: Example

HTML

<body onload="demo.start()"
<h3>Flapjax Demo</h3>
<input type="text" 1id="nl1" value="0"/>

<input type="text" 1d="n2" value="0"/>
<span 1d="sum'">0</span>
</body>

Browser
Flapjax Demo




Browser
Flapjax Demo

ClojureScript

defn extractFloatE |id
F/mapE parse-float (F/extractValueE 1id

defn start
nl extractFloatE "n1"

n2 extractFloatE "n2"
sum (F/1iftB + nl1 n2
F/insertValueB sum "sum" "innerHTML"




Browser
Flapjax Demo

Clo ureScrigt

de extractFl§atE | id
I'mapE parsefjfloat (F/efjtractValueE id

de start
nl extiractFloatERN'n1"

n2 ractFloatEN'n2"

m -2 N )

F/insertValueB sum "sum" "innerHTML"




M-x ceremony-mode

defn extractFloatE |id
F/mapE parse-float |F/extractValueE| id

defn start
nil extractFloatE| "n1"
n2 extractFloatE|'"'n2"
sum (F/1liftB|+ nl1 n2
F/insertValueB [sum "sum" "innerHTML"




Browser
Flapjax Demo

ClojureScript

defn extractFloatE |id
F/mapE parse-float (F/extractValueE 1id

defn start
nl extractFloatE "ni1"

n2 extractFloatE "n2"
SBIR (F/1iftB + nl1 n2)
F/insertValueB sum "sum" "innerHTML"




Browser
Flapjax Demo

ClojureScript

(defn extractFloatE [id]
s T reaws e T loat N(F/extractValtueE o))

[]
(extractFloatE "ni")

.« (extractFloatE "n2")
SUIN (+ n1 n2)§
(t insertValueB sum "sum" "innerHTML")))







Spreadsheets

* |nput cells

* user inserts values, evaluation propagates when
new values are entered

® Formula cells

* user defines, evaluated when constituent cells
change value

* |f spreadsheets are so awesome, why do we
care about FRP?



Continuous vs. Discrete
Propagation
* Spreadsheet propagation is continuous

* Evaluation only happens if new values are
introduced into the system

* |t's not possible to trigger evaluation without
providing a new value

® FRP evaluation is continuous and/or discrete

o can take Event Stream arguments

* Event Streams trigger evaluation in dependents
when any value is received, regardless of novelty



<opinion>

* FRP might be good for modeling I/O flows that
are for side effects only (e.g. Rx Observables)

* FRP not awesome in ClojureScript

* Application state spreads across the graph as
intermediate, disparate Behaviors

* Requires special control structures ( )

* Implying Event Streams of Event Streams of Event Streams ...

* Hard to debug without static type system

* Overlap between Behavior, Event Stream APls

* No integration point with Clojure state model

</opinion>



Javelin

Abstract spreadsheet library for reactive
programming with values in ClojureScript.

Proudly delivered as a single macro, cell, that
you write regular ClojureScript inside of.



ClojureScript

(defn start []
(let [a (cell 0) W —————nput cell
b (cell (1nc a)) W formula cell

C (cell (+ 123 a b)) ] @ formula cell
(cell (.log js/console c))

(swap! a 1nc)
(js/alert @b)))




ClojureScript

(let [a (cell 0)
b (cell (inc a))
c (cell (+ 123 a b))]

(cell (.log js/console c))
(swap! a 1inc))

Javelin guarantees
that cell ¢ sees only

consistent values of
and b. This makes

Javelin “glitch-free”

(.log js/console c)




Javelin's Opinions

* At any point in time, a web application is in
exactly one state

* ...and that state is stored as a value in an input cell
'/ '/
we call the “stem cell

®* The stem cell is the root node of the dependency
graph representing the application's behavior

* Everything the user sees or can do is governed
by data in the stem cell

e ...or derived formula cells



“Real” Javelin Apps

* We use 2 other things to build our applications:

* hlisp: compiles HTML to ClojureScript

* wigwam: server, client RPC machinery

e Available at


https://github.com/tailrecursion

Javelin/hlisp/wigwam architecture
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* DOM elements bound to cells (hlisp)

* RPC always return stem cell (wigwam)



Thank you!

A freshdiet
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