
freshfreshdietdiet
THETHE

Fresh, Gourmet, Delivered DailyFresh, Gourmet, Delivered Daily

FRP in ClojureScript with JavelinFRP in ClojureScript with Javelin
Alan DipertAlan Dipert
@alandipert@alandipert

nginx

syslog-ng

jetty

postgresredis

fn

fn

val val val

(+ 1 (* 2 3))

+

1

*

2 3

Applicative EvaluationApplicative Evaluation

● Evaluate argumentsEvaluate arguments
● Syntax specifies orderSyntax specifies order

● Apply arguments to functionsApply arguments to functions
● No notion of timeNo notion of time

● Almost: in Clojure, CL args eval left to rightAlmost: in Clojure, CL args eval left to right

(+ 1 (* 2 ?))

+

1

*

2 ?

(+ 1 (* 2 ?))

+

1 2 ?

(+ 1 (* 2 ?))

1 2 ?

1 2 ?

ThreadThread

Child ThreadChild Thread

Child ThreadChild Thread

Parent ThreadParent Thread

+ time+ time==

+ time+ time==
FunctionalFunctional
Reactive Reactive
ProgrammingProgramming

Reactive EvaluationReactive Evaluation

+

1

*

2 ?

Reactive EvaluationReactive Evaluation

+

1

*

2 4

do something with result

Reactive EvaluationReactive Evaluation

● Maintain dependency order of processesMaintain dependency order of processes
● Evaluation triggered by availability of Evaluation triggered by availability of

argumentsarguments
● Instead of by invocation of parentInstead of by invocation of parent

● Programs look/feel applicativePrograms look/feel applicative
● We don't need threads (necessarily)We don't need threads (necessarily)

Browsers: bells, whistles, gotchasBrowsers: bells, whistles, gotchas

● JavaScript event loopJavaScript event loop
● Callbacks everywhereCallbacks everywhere

● DOM (Document Object Model)DOM (Document Object Model)
● DOM elements contribute to application state, but DOM elements contribute to application state, but

are poor variables: they're mutable globalsare poor variables: they're mutable globals

see hlisp! https://github.com/tailrecursion/hlisp-starter

https://github.com/tailrecursion/hlisp-starter

FRP: Objects in PlayFRP: Objects in Play

● Event StreamsEvent Streams
● Sources of zero or more values over timeSources of zero or more values over time
● Incoming events trigger activity in whatever is Incoming events trigger activity in whatever is

listeninglistening

● Behaviors (a.k.a. Signals)Behaviors (a.k.a. Signals)
● Always-valued boxes, Always-valued boxes, refref-like-like
● Value can be derived from a function applied to 1 or Value can be derived from a function applied to 1 or

more “constituent” objectsmore “constituent” objects
● Application of this function is triggered by activity in Application of this function is triggered by activity in

constituent objectsconstituent objects

FRP: Fundamental OperationsFRP: Fundamental Operations

● Event StreamsEvent Streams
● filterfilter, , mapmap, , mergemerge etc. etc.
● startsWithstartsWith: return a new Behavior backed by the : return a new Behavior backed by the

stream, provided an initial valuestream, provided an initial value

● BehaviorsBehaviors
● liftlift: return a new Behavior provided 1 or more : return a new Behavior provided 1 or more

other objects and a function other objects and a function
● changeschanges: return a new Event Stream carrying a : return a new Event Stream carrying a

Behavior's value over timeBehavior's value over time

FRP with Flapjax: ExampleFRP with Flapjax: Example

HTML
<body onload="demo.start()"
 <h3>Flapjax Demo</h3>
 <input type="text" id="n1" value="0"/>
 <input type="text" id="n2" value="0"/>
 0
</body>

Browser

Browser

ClojureScript
(defn extractFloatE [id]
 (F/mapE parse-float (F/extractValueE id)))

(defn start []
 (let [n1 (extractFloatE "n1")
 n2 (extractFloatE "n2")
 sum (F/liftB + n1 n2)]
 (F/insertValueB sum "sum" "innerHTML")))

Browser

ClojureScript
(defn extractFloatE [id]
 (F/mapE parse-float (F/extractValueE id)))

(defn start []
 (let [n1 (extractFloatE "n1")
 n2 (extractFloatE "n2")
 sum (F/liftB + n1 n2)]
 (F/insertValueB sum "sum" "innerHTML")))

Browser

M-x ceremony-mode
(defn extractFloatE [id]
 (F/mapE parse-float (F/extractValueE id)))

(defn start []
 (let [n1 (extractFloatE "n1")
 n2 (extractFloatE "n2")
 sum (F/liftB + n1 n2)]
 (F/insertValueB sum "sum" "innerHTML")))

Browser

ClojureScript
(defn extractFloatE [id]
 (F/mapE parse-float (F/extractValueE id)))

(defn start []
 (let [n1 (extractFloatE "n1")
 n2 (extractFloatE "n2")
 sum (F/liftB + n1 n2)]
 (F/insertValueB sum "sum" "innerHTML")))

Browser

ClojureScript
(defn extractFloatE [id]
 (F/mapE parse-float (F/extractValueE id)))

(defn start []
 (let [n1 (extractFloatE "n1")
 n2 (extractFloatE "n2")
 sum (+ n1 n2)]
 (F/insertValueB sum "sum" "innerHTML")))

omg

SpreadsheetsSpreadsheets

● Input cellsInput cells
● user inserts values, evaluation propagates when user inserts values, evaluation propagates when

new values are enterednew values are entered

● Formula cellsFormula cells
● user defines, evaluated when constituent cells user defines, evaluated when constituent cells

change valuechange value

● If spreadsheets are so awesome, why do we If spreadsheets are so awesome, why do we
care about FRP?care about FRP?

Continuous vs. Discrete Continuous vs. Discrete
PropagationPropagation

● Spreadsheet propagation is Spreadsheet propagation is continuouscontinuous
● Evaluation only happens if new values are Evaluation only happens if new values are

introduced into the systemintroduced into the system
● It's not possible to trigger evaluation without It's not possible to trigger evaluation without

providing a new valueproviding a new value

● FRP evaluation is continuous and/or FRP evaluation is continuous and/or discretediscrete
● liftlift can take Event Stream arguments can take Event Stream arguments
● Event Streams trigger evaluation in dependents Event Streams trigger evaluation in dependents

when any value is received, regardless of noveltywhen any value is received, regardless of novelty

<opinion><opinion>
● FRP might be good for modeling I/O flows that FRP might be good for modeling I/O flows that

are for side effects only (e.g. Rx Observables)are for side effects only (e.g. Rx Observables)
● FRP not awesome in ClojureScriptFRP not awesome in ClojureScript

● Application state spreads across the graph as Application state spreads across the graph as
intermediate, disparate Behaviorsintermediate, disparate Behaviors

● Requires special control structures (Requires special control structures (switchEswitchE))
● Implying Event Streams Implying Event Streams of Event Streams of Event Streams of Event Streams …of Event Streams …
● Hard to debug without static type systemHard to debug without static type system

● Overlap between Behavior, Event Stream APIsOverlap between Behavior, Event Stream APIs
● No integration point with Clojure state modelNo integration point with Clojure state model

</opinion></opinion>

JavelinJavelin

Abstract spreadsheet library for reactive Abstract spreadsheet library for reactive
programming with values in ClojureScript.programming with values in ClojureScript.

Proudly delivered as a single macro, Proudly delivered as a single macro, cellcell, that , that
you write regular ClojureScript inside of.you write regular ClojureScript inside of.

ClojureScript
(defn start []
 (let [a (cell 0)
 b (cell (inc a))
 c (cell (+ 123 a b))]
 (cell (.log js/console c))
 (swap! a inc)
 (js/alert @b)))

input cell
formula cell
formula cell
anon. formula cell
mutation
dereference

ClojureScript
(let [a (cell 0)
 b (cell (inc a))
 c (cell (+ 123 a b))]
 (cell (.log js/console c))
 (swap! a inc))

a

b

c

(.log js/console c)

(swap! a inc)

Javelin guarantees Javelin guarantees
that cell that cell cc sees only sees only
consistentconsistent values of values of
aa and and bb. This makes . This makes
Javelin “glitch-free”Javelin “glitch-free”

Javelin's OpinionsJavelin's Opinions

● At any point in time, a web application is in At any point in time, a web application is in
exactly one stateexactly one state
● ...and that state is stored as a value in an input cell ...and that state is stored as a value in an input cell

we call the “stem cell”we call the “stem cell”
● The stem cell is the root node of the dependency The stem cell is the root node of the dependency

graph representing the application's behaviorgraph representing the application's behavior

● Everything the user sees or can do is governed Everything the user sees or can do is governed
by data in the stem cellby data in the stem cell
● ...or derived formula cells...or derived formula cells

““Real” Javelin AppsReal” Javelin Apps

● We use 2 other things to build our applications:We use 2 other things to build our applications:
● hlisp: compiles HTML to ClojureScripthlisp: compiles HTML to ClojureScript
● wigwam: server, client RPC machinerywigwam: server, client RPC machinery

● Available at Available at https://github.com/tailrecursionhttps://github.com/tailrecursion

https://github.com/tailrecursion

Javelin/hlisp/wigwam architectureJavelin/hlisp/wigwam architecture

wigwamstem cell

cell
DOM
(hlisp)

clientclient serverserver

● DOM elements bound to cells (hlisp) DOM elements bound to cells (hlisp)
● RPC always return stem cell (wigwam)RPC always return stem cell (wigwam)

freshfreshdietdiet
THETHE

Fresh, Gourmet, Delivered DailyFresh, Gourmet, Delivered Daily

Thank you!Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

