FRP in ClojureScript with Javelin

Alan Dipert
@alandipert

A freshdiet

nginx

jetty

syslog-ng redis postgres

Read Between the
Lines

® Where do the semantics of a system live’

fn

val val val

Applicative Evaluation

* Evaluate arguments
* Syntax specifies order

* Apply arguments to functions

® No notion of time

* Almost: in Clojure, CL args eval left to right

Parent Thread

Child Thread

\

Child Thread

\

/\

/\

~

B
e
WE

/>\+ time

Functional X
Reactive — />\ -+ tlme
Programming

Reactive Evaluation

*
AN
il

Reactive Evaluation

+ do something with result

*
AN
o 4

Reactive Evaluation

* Maintain dependency order of processes

* Evaluation triggered by availability of
arguments

* |Instead of by invocation of parent

* Programs look/feel applicative

* We don't need threads (necessarily)

Browsers: bells, whistles, gotchas

* JavaScript event loop

* Callbacks everywhere
* DOM~Becument Object Model

e DOM elements cs bute=ta_application state, but
are.peoor variables: they're mutable Giobe

see hlisp! https://github.com/tailrecursion/hlisp-starter

https://github.com/tailrecursion/hlisp-starter

FRP: Objects in Play

* Event Streams

e Sources of zero or more values over time

* Incoming events trigger activity in whatever is
listening

* Behaviors (a.k.a. Signals)

* Always-valued boxes, -like

* Value can be derived from a function applied to 1 or
more “constituent” objects

* Application of this function is triggered by activity in
constituent objects

FRP: Fundamental Operations

e Event Streams

e filter, map, merge etc.

e startsWith: return a new Behavior backed by the
stream, provided an initial value

e Behaviors

e 1ift: return a new Behavior provided 1 or more
other objects and a function

e changes: return a new Event Stream carrying a
Behavior's value over time

FRP with Flapjax: Example

HTML

<body onload="demo.start()"
<h3>Flapjax Demo</h3>
<input type="text" 1id="nl1" value="0"/>

<input type="text" 1d="n2" value="0"/>
0
</body>

Browser
Flapjax Demo

Browser
Flapjax Demo

ClojureScript

defn extractFloatE |id
F/mapE parse-float (F/extractValueE 1id

defn start
nl extractFloatE "n1"

n2 extractFloatE "n2"
sum (F/1iftB + nl1 n2
F/insertValueB sum "sum" "innerHTML"

Browser
Flapjax Demo

Clo ureScrigt

de extractFl§atE | id
I'mapE parsefjfloat (F/efjtractValueE id

de start
nl extiractFloatERN'n1"

n2 ractFloatEN'n2"

m -2 N)

F/insertValueB sum "sum" "innerHTML"

M-x ceremony-mode

defn extractFloatE |id
F/mapE parse-float |F/extractValueE| id

defn start
nil extractFloatE| "n1"
n2 extractFloatE|'"'n2"
sum (F/1liftB|+ nl1 n2
F/insertValueB [sum "sum" "innerHTML"

Browser
Flapjax Demo

ClojureScript

defn extractFloatE |id
F/mapE parse-float (F/extractValueE 1id

defn start
nl extractFloatE "ni1"

n2 extractFloatE "n2"
SBIR (F/1iftB + nl1 n2)
F/insertValueB sum "sum" "innerHTML"

Browser
Flapjax Demo

ClojureScript

(defn extractFloatE [id]
s T reaws e T loat N(F/extractValtueE o))

[]
(extractFloatE "ni")

.« (extractFloatE "n2")
SUIN (+ n1 n2)§
(t insertValueB sum "sum" "innerHTML")))

Spreadsheets

* |nput cells

* user inserts values, evaluation propagates when
new values are entered

® Formula cells

* user defines, evaluated when constituent cells
change value

* |f spreadsheets are so awesome, why do we
care about FRP?

Continuous vs. Discrete
Propagation
* Spreadsheet propagation is continuous

* Evaluation only happens if new values are
introduced into the system

* |t's not possible to trigger evaluation without
providing a new value

® FRP evaluation is continuous and/or discrete

o can take Event Stream arguments

* Event Streams trigger evaluation in dependents
when any value is received, regardless of novelty

<opinion>

* FRP might be good for modeling I/O flows that
are for side effects only (e.g. Rx Observables)

* FRP not awesome in ClojureScript

* Application state spreads across the graph as
intermediate, disparate Behaviors

* Requires special control structures ()

* Implying Event Streams of Event Streams of Event Streams ...

* Hard to debug without static type system

* Overlap between Behavior, Event Stream APls

* No integration point with Clojure state model

</opinion>

Javelin

Abstract spreadsheet library for reactive
programming with values in ClojureScript.

Proudly delivered as a single macro, cell, that
you write regular ClojureScript inside of.

ClojureScript

(defn start []
(let [a (cell 0) W —————nput cell
b (cell (1nc a)) W formula cell

C (cell (+ 123 a b))] @ formula cell
(cell (.log js/console c))

(swap! a 1nc)
(js/alert @b)))

ClojureScript

(let [a (cell 0)
b (cell (inc a))
c (cell (+ 123 a b))]

(cell (.log js/console c))
(swap! a 1inc))

Javelin guarantees
that cell ¢ sees only

consistent values of
and b. This makes

Javelin “glitch-free”

(.log js/console c)

Javelin's Opinions

* At any point in time, a web application is in
exactly one state

* ...and that state is stored as a value in an input cell
'/ '/
we call the “stem cell

®* The stem cell is the root node of the dependency
graph representing the application's behavior

* Everything the user sees or can do is governed
by data in the stem cell

e ...or derived formula cells

“Real” Javelin Apps

* We use 2 other things to build our applications:

* hlisp: compiles HTML to ClojureScript

* wigwam: server, client RPC machinery

e Available at

https://github.com/tailrecursion

Javelin/hlisp/wigwam architecture

client

stem cell

server

<] wigwam

cell

Y |
> (hlisp) §

S

g

* DOM elements bound to cells (hlisp)

* RPC always return stem cell (wigwam)

Thank you!

A freshdiet

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

