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Applicative EvaluationApplicative Evaluation

● Evaluate argumentsEvaluate arguments
● Syntax specifies orderSyntax specifies order

● Apply arguments to functionsApply arguments to functions
● No notion of timeNo notion of time

● Almost: in Clojure, CL args eval left to rightAlmost: in Clojure, CL args eval left to right
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Reactive EvaluationReactive Evaluation
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Reactive EvaluationReactive Evaluation

● Maintain dependency order of processesMaintain dependency order of processes
● Evaluation triggered by availability of Evaluation triggered by availability of 

argumentsarguments
● Instead of by invocation of parentInstead of by invocation of parent

● Programs look/feel applicativePrograms look/feel applicative
● We don't need threads (necessarily)We don't need threads (necessarily)



Browsers: bells, whistles, gotchasBrowsers: bells, whistles, gotchas

● JavaScript event loopJavaScript event loop
● Callbacks everywhereCallbacks everywhere

● DOM (Document Object Model)DOM (Document Object Model)
● DOM elements contribute to application state, but DOM elements contribute to application state, but 

are poor variables: they're mutable globalsare poor variables: they're mutable globals

see hlisp! https://github.com/tailrecursion/hlisp-starter

https://github.com/tailrecursion/hlisp-starter


FRP: Objects in PlayFRP: Objects in Play

● Event StreamsEvent Streams
● Sources of zero or more values over timeSources of zero or more values over time
● Incoming events trigger activity in whatever is Incoming events trigger activity in whatever is 

listeninglistening

● Behaviors (a.k.a. Signals)Behaviors (a.k.a. Signals)
● Always-valued boxes, Always-valued boxes, refref-like-like
● Value can be derived from a function applied to 1 or Value can be derived from a function applied to 1 or 

more “constituent” objectsmore “constituent” objects
● Application of this function is triggered by activity in Application of this function is triggered by activity in 

constituent objectsconstituent objects



FRP: Fundamental OperationsFRP: Fundamental Operations

● Event StreamsEvent Streams
● filterfilter, , mapmap, , mergemerge etc. etc.
● startsWithstartsWith: return a new Behavior backed by the : return a new Behavior backed by the 

stream, provided an initial valuestream, provided an initial value

● BehaviorsBehaviors
● liftlift: return a new Behavior provided 1 or more : return a new Behavior provided 1 or more 

other objects and a function other objects and a function 
● changeschanges: return a new Event Stream carrying a : return a new Event Stream carrying a 

Behavior's value over timeBehavior's value over time



FRP with Flapjax: ExampleFRP with Flapjax: Example

HTML
<body onload="demo.start()"
  <h3>Flapjax Demo</h3>
  <input type="text" id="n1" value="0"/>
  <input type="text" id="n2" value="0"/>
  <span  id="sum">0</span>
</body>

Browser



Browser

ClojureScript
(defn extractFloatE [id]
  (F/mapE parse-float (F/extractValueE id)))

(defn start []
  (let [n1  (extractFloatE "n1")
        n2  (extractFloatE "n2")
        sum (F/liftB + n1 n2)]
    (F/insertValueB sum "sum" "innerHTML")))



Browser

ClojureScript
(defn extractFloatE [id]
  (F/mapE parse-float (F/extractValueE id)))

(defn start []
  (let [n1  (extractFloatE "n1")
        n2  (extractFloatE "n2")
        sum (F/liftB + n1 n2)]
    (F/insertValueB sum "sum" "innerHTML")))



Browser

M-x ceremony-mode
(defn extractFloatE [id]
  (F/mapE parse-float (F/extractValueE id)))

(defn start []
  (let [n1  (extractFloatE "n1")
        n2  (extractFloatE "n2")
        sum (F/liftB + n1 n2)]
    (F/insertValueB sum "sum" "innerHTML")))



Browser

ClojureScript
(defn extractFloatE [id]
  (F/mapE parse-float (F/extractValueE id)))

(defn start []
  (let [n1  (extractFloatE "n1")
        n2  (extractFloatE "n2")
        sum (F/liftB + n1 n2)]
    (F/insertValueB sum "sum" "innerHTML")))



Browser

ClojureScript
(defn extractFloatE [id]
  (F/mapE parse-float (F/extractValueE id)))

(defn start []
  (let [n1  (extractFloatE "n1")
        n2  (extractFloatE "n2")
        sum (+ n1 n2)]
    (F/insertValueB sum "sum" "innerHTML")))
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SpreadsheetsSpreadsheets

● Input cellsInput cells
● user inserts values, evaluation propagates when user inserts values, evaluation propagates when 

new values are enterednew values are entered

● Formula cellsFormula cells
● user defines, evaluated when constituent cells user defines, evaluated when constituent cells 

change valuechange value

● If spreadsheets are so awesome, why do we If spreadsheets are so awesome, why do we 
care about FRP?care about FRP?



Continuous vs. Discrete Continuous vs. Discrete 
PropagationPropagation

● Spreadsheet propagation is Spreadsheet propagation is continuouscontinuous
● Evaluation only happens if new values are Evaluation only happens if new values are 

introduced into the systemintroduced into the system
● It's not possible to trigger evaluation without It's not possible to trigger evaluation without 

providing a new valueproviding a new value

● FRP evaluation is continuous and/or FRP evaluation is continuous and/or discretediscrete
● liftlift can take Event Stream arguments can take Event Stream arguments
● Event Streams trigger evaluation in dependents Event Streams trigger evaluation in dependents 

when any value is received, regardless of noveltywhen any value is received, regardless of novelty



<opinion><opinion>
● FRP might be good for modeling I/O flows that FRP might be good for modeling I/O flows that 

are for side effects only (e.g. Rx Observables)are for side effects only (e.g. Rx Observables)
● FRP not awesome in ClojureScriptFRP not awesome in ClojureScript

● Application state spreads across the graph as Application state spreads across the graph as 
intermediate, disparate Behaviorsintermediate, disparate Behaviors

● Requires special control structures (Requires special control structures (switchEswitchE))
● Implying Event Streams Implying Event Streams of Event Streams of Event Streams of Event Streams …of Event Streams …  
● Hard to debug without static type systemHard to debug without static type system

● Overlap between Behavior, Event Stream APIsOverlap between Behavior, Event Stream APIs
● No integration point with Clojure state modelNo integration point with Clojure state model

</opinion></opinion>



JavelinJavelin

Abstract spreadsheet library for reactive Abstract spreadsheet library for reactive 
programming with values in ClojureScript.programming with values in ClojureScript.

Proudly delivered as a single macro, Proudly delivered as a single macro, cellcell, that , that 
you write regular ClojureScript inside of.you write regular ClojureScript inside of.



ClojureScript
(defn start []
  (let [a (cell 0)
        b (cell (inc a))
        c (cell (+ 123 a b))]
    (cell (.log js/console c))
    (swap! a inc)
    (js/alert @b)))

input cell
formula cell
formula cell
anon. formula cell
mutation
dereference



ClojureScript
(let [a (cell 0)
      b (cell (inc a))
      c (cell (+ 123 a b))]
  (cell (.log js/console c))
  (swap! a inc))

a

b

c

(.log js/console c)

(swap! a inc)

Javelin guarantees Javelin guarantees 
that cell that cell cc sees only  sees only 
consistentconsistent values of   values of  
aa and  and bb.  This makes .  This makes 
Javelin “glitch-free”Javelin “glitch-free”



Javelin's OpinionsJavelin's Opinions

● At any point in time, a web application is in At any point in time, a web application is in 
exactly one stateexactly one state
● ...and that state is stored as a value in an input cell ...and that state is stored as a value in an input cell 

we call the “stem cell”we call the “stem cell”
● The stem cell is the root node of the dependency The stem cell is the root node of the dependency 

graph representing the application's behaviorgraph representing the application's behavior

● Everything the user sees or can do is governed Everything the user sees or can do is governed 
by data in the stem cellby data in the stem cell
● ...or derived formula cells...or derived formula cells



““Real” Javelin AppsReal” Javelin Apps

● We use 2 other things to build our applications:We use 2 other things to build our applications:
● hlisp: compiles HTML to ClojureScripthlisp: compiles HTML to ClojureScript
● wigwam: server, client RPC machinerywigwam: server, client RPC machinery

● Available at Available at https://github.com/tailrecursionhttps://github.com/tailrecursion

https://github.com/tailrecursion


Javelin/hlisp/wigwam architectureJavelin/hlisp/wigwam architecture

wigwamstem cell

cell
DOM
(hlisp)

clientclient serverserver

● DOM elements bound to cells (hlisp)  DOM elements bound to cells (hlisp)  
● RPC always return stem cell (wigwam)RPC always return stem cell (wigwam)
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Thank you!Thank you!
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