
JACL: A Common Lisp for Developing Single-Page Web
Applications

Alan Dipert
alan@dipert.org

ABSTRACT
This paper demonstrates JavaScript-Assisted Common Lisp (JACL),
an experimentalWeb-browser based implementation of an extended
subset of Common Lisp. JACL, which is in the early stages of de-
velopment, is an effort to explore new techniques for large-scale
Single-page Web Application (SPA) development in Lisp. JACL in-
cludes an optimizing Lisp-to-JavaScript compiler and interoperates
with JavaScript. JACL promotes interactive, residential development
in the Web browser environment with its asynchronous reader and
Chrome DevTools-based REPL client.

CCS CONCEPTS
• Software and its engineering → Dynamic compilers; Run-
time environments.

KEYWORDS
Common Lisp, JavaScript, web applications
ACM Reference Format:
Alan Dipert. 2020. JACL: A Common Lisp for Developing Single-Page Web
Applications. In Proceedings of ELS ’20: European Lisp Symposium (ELS ’20).
ACM, New York, NY, USA, 4 pages. https://doi.org/10.5281/zenodo.3764494

1 INTRODUCTION
The demand for SPAs in the past decade has only grown, and users
and stakeholders continually expect larger and more sophisticated
applications. Unfortunately, large-scale development on the Web
browser platform presents a particular set of challenges that are not
easily overcome. Developers have responded to these challenges
by creating a widening variety of special-purpose programming
languages that compile to JavaScript [12, 23, 24]. Each new language
promotes one or more paradigms, application architectures, or
development workflows, and claims some advantage relative to the
status quo.

This paper demonstrates one new such language, JavaScript-
Assisted Common Lisp (JACL), an experimental implementation of
an extended subset of Common Lisp. JACL was created to explore
new techniques for applying Common Lisp — a proven[6, 13, 14]
substrate for UI innovation — to SPA development.

Many projects involving compilation of Lisp to JavaScript pre-
cede JACL. Lisps that have either demonstrated industrial utility or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ELS ’20, April 27–28, 2020, Zürich, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.5281/zenodo.3764494

that implement a significant subset of Common Lisp are surveyed
in appendix A. Like many of these related efforts, JACL includes
an online, optimizing compiler and supports interoperation with
JavaScript. JACL distinguishes itself from these efforts by plac-
ing special emphasis on the value of residential development style,
where both applications and the tools used to create them co-evolve
in a shared environment. JACL provides fundamental support for
residential development with its asynchronous reader.

2 INTEROPERATIONWITH JAVASCRIPT
JACL integrates tightly with JavaScript and depends heavily on the
JavaScript runtime. As a result, JACL enjoys roughly the same appli-
cability and performance characteristics as the JavaScript platform.
However, this high degree of integration is at odds with comfor-
mance to the Common Lisp specification, and so JACL will never
strictly conform.

2.1 Object Types
JACL introduces several of its own object types, currently imple-
mented in JavaScript, including Cons, LispSymbol, and LispString.
Cons and LispSymbol are introduced because JavaScript does not
include direct equivalents. LispString is introduced because the
native JavaScript String is immutable, whereas Lisp strings are
mutable.

JACL includes support for only one numeric type, the JavaScript
Number object. The JavaScript Number is a double-precision 64-bit
IEEE 754 value. The JACL reader interprets integers as Number ob-
jects. In the future, JACL will also interpret floating-point numbers
as Number. This decision trades ANSI conformance for performance.
If either type were boxed, arithmetic performance would suffer in-
tolerably. JSCL[20] and Valtan[11] make the same tradeoff.

JACL functions are JavaScript functions, and may be invoked by
JavaScript callbacks without a special calling convention. JavaScript
functions named as Lisp values may be invoked with FUNCALL
or APPLY. Neither arguments nor return values are automatically
coerced to or from any particular set of object types.

2.2 Operators
The JACL compiler supports a special operator for constructing
fragments of JavaScript code, verbatim, from Lisp. The semantics
of this operator, JACL:%JS, are inspired by a similar feature of
ClojureScript[9], js*. For example, the following JACL code dis-
plays the number 3 in an alert box:

(JACL:%JS "window.alert(~{})" 3)

The character sequence ~{} is distinct from any plausible
JavaScript syntax and so is used as placeholder syntax. There must
be as many placeholders as there are arguments to JACL:%JS.

https://doi.org/10.5281/zenodo.3764494
https://doi.org/10.5281/zenodo.3764494

ELS ’20, April 27–28, 2020, Zürich, Switzerland Alan Dipert

In addition to JACL:%JS, the JACL compiler currently supports
three more special operators for interacting with the host plat-
form: JACL:%NEW, JACL:%DOT and JACL:%CALL. These operators
perform JavaScript object instantiation, field access, and function
calls, respectively. Since JACL functions are JavaScript functions,
JACL:%CALL is the basis for FUNCALL in JACL, and for function calls
generally.

JACL also supplies a convenience macro, JACL:\. or “the dot
macro” for performing a series of field accesses and method calls1
concisely. The dot macro takes direct inspiration from the ..macro
of Clojure[8]. JACL:\. expands to zero or more nested JACL:%DOT
or JACL:%CALL forms. Here is an example of a JACL:\. form —
equivalent to the JavaScript expression (123).toString().length
— and its corresponding expansion:
(\. 123 (|toString|) |length|)
(%DOT (%CALL 123 |toString|) |length|)

Note that JavaScript identifiers are case sensitive, and so case-
preserving, pipe-delimited Lisp symbols must be used to refer to
JavaScript object field and method names. The readtable case of
the JACL reader cannot currently be modified. The dot macro also
recognizes Lisp or JavaScript strings as JavaScript identifiers.

2.3 Reader Macros
JACL includes two reader macros to support interoperation with
JavaScript. These macros may be added to the *READTABLE* by call-
ing the function (JACL:ENABLE-JS-SYNTAX). @" denotes JavaScript
String objects and @| denotes JavaScript identifiers.

For example, the following two forms, which both evaluate to a
JavaScript String, are equivalent:
@"Hello"
(\. "Hello" (|toString|))

@| may generally be used in place of the JACL:%JS special form to
refer to JavaScript identifiers. (JACL:%JS "alert") and @|alert|
are equivalent.

3 RUNNING JACL PROGRAMS
Currently, JACL programs may be evaluated in the Web browser in
two ways: by adding Lisp <script> tags to the <head> of a Web
page that also includes jacl.js, or by using the jacl tool included
in the JACL distribution[1] to connect to a running Web browser.

3.1 Lisp Scripts
Development of JACL itself is currently driven primarily by mod-
ifying jacl.js and the boot.lisp and jacl-tests.lisp Lisp
scripts. The Lisp scripts are included in the jacl.html file in the
JACL distribution[1]. After each modification, the Web browser is
reloaded, and test results are displayed.

This Lisp script-based workflow is similar to the traditional
JavaScript development workflow and has served JACL develop-
ment so far. However, Lisp scripts require runtime parsing and com-
pilation of JACL source code, among other inefficiencies. Reloading
the Web browser also destroys the entire runtime environment.

1Strictly speaking, JavaScript “method calls” are normal function calls but with a
particular value of this.

The easiest way to create JACL programs in this manner is to
start with the jacl.html Web page provided by JACL and then
modify it by removing or adding new Lisp scripts.

It is imagined that ultimately, Lisp sources will be incorporated
into the Lisp image exclusively by the REPL client tool. An arrange-
ment such as this decouples source code loading from the Web
browser lifecycle. Production executables may then be produced
at any time from the Lisp image using a Lisp function in a manner
similar to the SAVE-LISP-AND-DIE[22] function in SBCL or the
DELIVER[16] function in LispWorks.

3.2 REPL
JACL includes a REPL client program, jacl, that may be used to
execute JACL programs in a Web browser from a terminal on the
host. This process is described in detail in the RUN.md document
included in the JACL distribution[1], but is summarized here.

In order to use the REPL, the user must first start either the
Google Chrome or Chromium browser with the remote debugging
feature enabled. With remote debugging enabled, the Web browser
may be controlled using a client program over a WebSocket con-
nection. Then, the user must navigate to a Web page that includes
at least jacl.js and boot.lisp.

Finally, the user must start the jacl REPL client in a terminal.
jacl leverages the remote debugging feature as a REPL transport,
using it to send and receive characters between the host and the
remote JACL runtime. The jacl tool is currently written in R[21]
and uses the chromote[7] package for interacting with the remote
Chrome or Chromium browser.

The jacl program has no knowledge of JACL syntax or se-
mantics; it merely sends and receives characters. The intentional
simplicity of jacl is part of the larger project goal of promot-
ing residential-style tool and program development in the target
environment. The simplicity of jacl is possible because of the
asynchronous nature of the JACL reader. Incoming characters de-
livered over the WebSocket debugging connection are received by
callback functions in the Web browser. The received characters are
asynchronously and incrementally parsed into Lisp data. When a
complete datum is formed, the compiler is called, and the result-
ing JavaScript is evaluated. Finally, any output is sent back over
the debugger connection and received and printed by the jacl
program.

4 CONCLUSION
We introduced JACL, a new and experimental Common Lisp cre-
ated to explore techniques for building sophisticated SPAs. JACL
integrates tightly with the Web browser platform and interoperates
directly with JavaScript. Compared to other browser-based Lisps,
JACL promotes residential development, and introduces a new tech-
nique for integrating the REPL into the development workflow.

5 FUTUREWORK
JACL currently lacks many basic Common Lisp data types, func-
tions, and operators. Ultimately, JACL should support as much
of Common Lisp as is possible, accounting for the severe limita-
tions imposed by JavaScript and the Web platform. Fortunately,

JACL: A Common Lisp for Developing Single-Page Web Applications ELS ’20, April 27–28, 2020, Zürich, Switzerland

the many other existing Common Lisps that compile to JavaScript
demonstrate that a compelling implementation is achievable.

An in-browser REPL and other tools for interacting with the
JACL runtime in the Web browser would be desirable. Such tools
could optionally remain as parts of deployed applications and pro-
vide a degree of introspection and extension capability even after
the application has been deployed.

Other than work related to missing features such as multiple
values, CLOS, and the conditions system, much design work re-
mains with regard to the specific affordances of the jacl tool. For
example, it’s unclear how a large JACL project involving library
dependencies and multiple source files should be managed and
loaded.

6 ACKNOWLEDGMENTS
The author wishes to thankMicha Niskin, Bart Botta, Kevin Lynagh,
Lionel Henry, and Andy Keep for invaluable feedback on early
versions of this paper. The author wishes to express particular
thanks to Robert Strandh not only for his feedback, but also for his
guidance on the writing process.

The author also wishes to express special gratitude to his beauti-
ful wife, Sandra Dipert, for her encouragement and support.

Finally, the author wishes to express his deepest thanks to his
father, the late Randall R. Dipert, for first telling him about Lisp
and many other things besides.

REFERENCES
[1] Alan Dipert. 2020. JACL. Retrieved April 16, 2020 from https://tailrecursion.

com/JACL/
[2] Marco Baringer. 2005. Parenscript. Retrieved February 12, 2020 from

https://web.archive.org/web/20051122141019/http://blogs.bl0rg.net/netzstaub/
archives/000525.html

[3] Mihai Bazon. 2012-2018. Implementation notes. Retrieved February 12, 2020 from
http://lisperator.net/slip/impl

[4] Mihai Bazon. 2012-2018. SLip âĂŤ a Lisp system in JavaScript. Retrieved February
12, 2020 from http://lisperator.net/slip/

[5] Mihai Bazon. 2012-2018. Versus Common Lisp. Retrieved February 12, 2020 from
http://lisperator.net/slip/vscl

[6] Howard I. Cannon. 2007. Flavors: A non-hierarchical approach to object-
oriented programming. Retrieved February 12, 2020 from http://www.
softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf

[7] Winston Chang. [n.d.]. chromote: Headless Chrome Web Browser Interface. https:
//github.com/rstudio/chromote

[8] Cognitect, Inc. 2020. Clojure. Retrieved February 12, 2020 from https://clojure.org/
[9] Cognitect, Inc. 2020. ClojureScript. Retrieved February 12, 2020 from https:

//clojurescript.org/
[10] Cognitect, Inc. 2020. Companies. Retrieved

https://clojure.org/community/companies from https://clojurescript.org/
community/companies

[11] cxxxr. [n.d.]. cxxxr/valtan. Retrieved April 4, 2020 from https://github.com/
cxxxr/valtan

[12] Evan Czaplicki. 2012. Elm: Concurrent FRP for Functional GUIs. Retrieved
February 12, 2020 from https://elm-lang.org/assets/papers/concurrent-frp.pdf

[13] B. A. Myers et al. 1990. Comprehensive Support for Graphical, Highly-Interactive
User Interfaces: The Garnet User Interface Development Environment. IEEE
Computer 23, 11 (Nov. 1990), 71–85. https://doi.org/10.1109/2.60882

[14] Paul Hammant. 2013. Interface Builder’s Alternative Lisp timeline. Retrieved
February 20, 2020 from https://paulhammant.com/2013/03/28/interface-builders-
alternative-lisp-timeline/

[15] Rich Hickey. 2012. ClojureScript Release. Retrieved February 12, 2020 from
https://www.youtube.com/watch?v=tVooR-dF_Ag

[16] LispWorks Ltd. 2017. deliver. Retrieved February 21, 2020 from http://www.
lispworks.com/documentation/lw71/DV/html/delivery-220.htm

[17] Vladimir Sedach Marco Baringer, Henrik Hjelte. 2005-2019. Parenscript Reference
Manual. Retrieved February 12, 2020 from https://common-lisp.net/project/
parenscript/reference.html

[18] Peter Norvig. 1992. Paradigms of Artificial Intelligence Programming: Case studies
in Common Lisp. Morgan Kaufmann Publishers, San Francisco, CA, USA.

[19] David Vázquez Púa. 2018. Growing a Lisp compiler. Retrieved February 12, 2020
from https://www.youtube.com/watch?v=XT7JYPtWMd8

[20] David Vázquez Púa and contributors. [n.d.]. jscl-project/jscl. Retrieved February
12, 2020 from https://github.com/jscl-project/jscl/

[21] R Core Team. [n.d.]. R: A Language and Environment for Statistical Computing.
http://www.R-project.org/

[22] SBCL Project Contributors. 2020. SBCL 2.0.1 User Manual. Retrieved February
21, 2020 from http://www.sbcl.org/manual/

[23] Soma Somasegar. 2012. TypeScript: JavaScript Development at Application Scale.
Retrieved February 4, 2020 from https://web.archive.org/web/20121003001910/
http://blogs.msdn.com/b/somasegar/archive/2012/10/01/typescript-javascript-
development-at-application-scale.aspx

[24] Wikipedia contributors. 2020. Reason (syntax extension for OCaml) —Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Reason_
(syntax_extension_for_OCaml)&oldid=940051580 [Online; accessed February 12,
2020].

A SURVEY OF RELATED LISPS
A.1 Parenscript
Released in 2005[2], Parenscript[17] was the first Common Lisp
compiler to target JavaScript. Parenscript is not bootstrapped and
its compiler is not written in JavaScript, and so it relies on a hosting
Common Lisp system for compilation. Only JavaScript types are
available to Parenscript programs at runtime, and so Parenscript is
more of a syntax frontend for JavaScript than it is an interactive
Lisp system. While Parenscript is not positioned to facilitate large-
scale SPA development, it remains a popular way to add dynamic
JavaScript-based behaviors to static Web sites.

A.2 SLip
SLip[3, 4] is arguably themost ambitious Common Lisp-on-JavaScript
system created to date, even though it intentionally diverges[5]
from Common Lisp in certain ways. It offers a stunning array of
powerful features including a self-hosting compiler, a full set of con-
trol operators, JavaScript Foreign-Function Interface (FFI), tail-call
optimization, green threads, and perhaps most impressively, a resi-
dent Emacs clone, Ymacs. SLip is based originally on the compiler
and bytecode interpreter presented in Chapter 23 of Paradigms of Ar-
tificial Intelligence Programming: Case studies in Common Lisp[18].

A.3 JSCL
JSCL[19, 20] compiles directly to JavaScript and is self-hosting,
includes the major control operators, and integrates tightly with
JavaScript. JSCL includes a reader, compiler, and printer, and evalua-
tion is performed by the JavaScript eval() function. Between these,
a Read Eval Print Loop (REPL) is possible, and the JSCL distribution
includes an implementation of one.

A.4 ClojureScript
ClojureScript [9, 15] is probably the most successful Lisp dialect
for building SPAs by number of commercial users [10]. Clojure-
Script is a dialect of an earlier language, Clojure[8], which targets
Java Virtual Machine (JVM) bytecode. The ClojureScript reader
and macro systems were both originally hosted in Clojure, in a
manner similar to Parenscript. ClojureScript prioritizes the ability
to produce high-performance deliverables.

https://tailrecursion.com/JACL/
https://tailrecursion.com/JACL/
https://web.archive.org/web/20051122141019/http://blogs.bl0rg.net/netzstaub/archives/000525.html
https://web.archive.org/web/20051122141019/http://blogs.bl0rg.net/netzstaub/archives/000525.html
http://lisperator.net/slip/impl
http://lisperator.net/slip/
http://lisperator.net/slip/vscl
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf
https://github.com/rstudio/chromote
https://github.com/rstudio/chromote
https://clojure.org/
https://clojurescript.org/
https://clojurescript.org/
https://clojurescript.org/community/companies
https://clojurescript.org/community/companies
https://github.com/cxxxr/valtan
https://github.com/cxxxr/valtan
https://elm-lang.org/assets/papers/concurrent-frp.pdf
https://doi.org/10.1109/2.60882
https://paulhammant.com/2013/03/28/interface-builders-alternative-lisp-timeline/
https://paulhammant.com/2013/03/28/interface-builders-alternative-lisp-timeline/
https://www.youtube.com/watch?v=tVooR-dF_Ag
http://www.lispworks.com/documentation/lw71/DV/html/delivery-220.htm
http://www.lispworks.com/documentation/lw71/DV/html/delivery-220.htm
https://common-lisp.net/project/parenscript/reference.html
https://common-lisp.net/project/parenscript/reference.html
https://www.youtube.com/watch?v=XT7JYPtWMd8
https://github.com/jscl-project/jscl/
http://www.R-project.org/
http://www.sbcl.org/manual/
https://web.archive.org/web/20121003001910/http://blogs.msdn.com/b/somasegar/archive/2012/10/01/typescript-javascript-development-at-application-scale.aspx
https://web.archive.org/web/20121003001910/http://blogs.msdn.com/b/somasegar/archive/2012/10/01/typescript-javascript-development-at-application-scale.aspx
https://web.archive.org/web/20121003001910/http://blogs.msdn.com/b/somasegar/archive/2012/10/01/typescript-javascript-development-at-application-scale.aspx
https://en.wikipedia.org/w/index.php?title=Reason_(syntax_extension_for_OCaml)&oldid=940051580
https://en.wikipedia.org/w/index.php?title=Reason_(syntax_extension_for_OCaml)&oldid=940051580

ELS ’20, April 27–28, 2020, Zürich, Switzerland Alan Dipert

A.5 Valtan
Valtan[11] compiles to JavaScript and includes a suite of FFI op-
erators for interoperating with JavaScript. It is self-hosting and

features a sophisticated, CLOS-based compiler architecture. It also
includes a REPL and several example applications.

	Abstract
	1 Introduction
	2 Interoperation with JavaScript
	2.1 Object Types
	2.2 Operators
	2.3 Reader Macros

	3 Running JACL Programs
	3.1 Lisp Scripts
	3.2 REPL

	4 Conclusion
	5 Future Work
	6 Acknowledgments
	References
	A Survey of Related Lisps
	A.1 Parenscript
	A.2 SLip
	A.3 JSCL
	A.4 ClojureScript
	A.5 Valtan

