
Old-School FP

Common Lisp
Alan Dipert, alan@dipert.org

Orange Combinator

2018-12-17



Lisp History

 Invented by John McCarthy at MIT in 1958

 Inspired by Alonzo Church’s lambda calculus

 Described in 1960 paper, Recursive Functions of Symbolic Expressions 

and Their Computation by Machine, Part I

 Shows a Turing-complete language for algorithms and defines it in terms of 

an eval function written in itself

 Implemented by Steve Russell around 1960

 A student of McCarthy’s, Russell saw McCarthy’s paper on his desk, read it, 

and implemented the eval function in machine code. The result was a Lisp 

interpreter.

 Language represented with its own data structures: homoiconicity



Lambda Calculus
 (λx.M)

 Lambda abstraction

 M is any lambda term

 β-reduction

 ((λx.M) E) → (M[x:=E])

 (lambda (x) M…)

 Anonymous function

 M… is zero or more expressions

 Evaluation

 ((lambda (x) M…) E) → (M[x:=E])

Lisp



Relationship to AI

 Associated with Artificial Intelligence (AI) research since its invention 

at the MIT AI Lab by McCarthy in 1958

 First symbolic programming language

 As opposed to numeric like Fortran (1957)

 Objects and operations upon them not necessarily numeric

 Logical

 Set-theoretic

 First garbage-collected language

 Memory reclaimed automatically when possible

 Really they just needed a decent scripting language to iterate quickly 

with

 Today, most programming is “symbolic”!



Classic Lisp: member*

(defun member* (x xs)

(if xs

(if (eql (car xs) x)

xs

(member* x (cdr xs)))))

(member* 2 ‘(1 2 3)) → ‘(2 3)

 defun: defines a function in the current package

 (x xs): function parameters

 if: conditional expression, (if test consequent <alternative>)

 car: accesses the first element of a cons cell, which is a pair

 eql: “shallow” equality predicate between symbols and numbers

 cdr: accesses the second element of a cons cell



Classic Lisp: member*

(defun member* (x xs)

(if xs

(if (eql (car xs) x)

xs

(member* x (cdr xs)))))

 xs is a list; lists are linked lists made up of cons cells, the final 

cell of which has a nil cdr

 The empty list () can also be written as nil

 nil is the only logically-false value

 definition is tail-recursive as its call to itself is the “last” 

expression in the function body, or in tail position



Classic Lisp: mapcar*

(defun mapcar* (f xs)

(if xs

(cons (funcall f (car xs))

(mapcar* f (cdr xs)))))

(mapcar* (lambda (n) (* n n)) ‘(1 2 3)) → ‘(1 4 9)

 mapcar* is a higher-order function (HOF): it takes another function as 

an argument

 cons: construct a new cons cell with supplied car and cdr

 funcall: invoke user-supplied function f with the argument (car xs)

 Can’t just (f (car xs)) because functions and values inhabit separate 

namespaces

 Common Lisp is a Lisp-2 because of this bifurcation. Scheme and Clojure are

examples of Lisp-1s: in those Lisps, functions are values.



Classic Lisp: mapcar*

(defun mapcar* (f xs)

(if xs

(cons (funcall f (car xs))

(mapcar* f (cdr xs)))))

(mapcar* (lambda (n) (* n n)) ‘(1 2 3)) → ‘(1 4 9)

 mapcar* is a higher-order function: it accepts a function as an 

argument

 mapcar* is not tail-recursive

 Can’t be converted automatically by the compiler into a loop

 Sufficiently-long input lists will cause stack overflow

 Problem can be “solved” efficiently by building up a list of results

and maintaining the last result, so that it can be appended to

 Imperative/tedious nature of such code motivates lazy evaluation or 

lazy sequences



Common Lisp: iterative mapcar*

(defun mapcar* (f xs)

(loop for x in xs

collect (funcall f x)))

 loop: A macro that implements an embedded DSL specifically tailored to 

iteration

 Macros are functions that receive their arguments un-evaluated, as datums, 

at compile time.

 As the compiler walks source code, it substitutes any macro it encounters 

with that macro’s return value or expansion

 Compiler repeatedly calls the macro until its expansion no longer changes

 Macros may return code that contains calls to other macros

 Once the expansion no longer changes, all macros have been substituted.

 Macros can be used to implement any language that can be described with 

Lisp data. We’re programmers, we should program our programs.

 Rare in daily use but uniquely powerful and key to performance



Implementations

 Commercial

 Allegro CL: integrates with persistent object store, has high-performance 

embedded Prolog

 LispWorks: Looks nice for hobby-programming and delivering small 

executables

 Free

 Steel Bank Common Lisp (SBCL): the premier free implementation

 Clasp: New LLVM-based implementation in heavy development with much promise

 JSCL: Browser-based implementation that compiles to JS

 SLip: Browser-based implementation with its own VM, green threads 

http://lisperator.net/slip/



Minor Encumbrances

 Package system

 Effectively case-insensitive

 Complicates interoperation with other languages, data formats

 Allegro CL mitigates this with its “Modern Mode”

 Lack of cURL binding and JSON handling out of the box

 Any work program will necessarily require QuickLisp

 Compare to Node.js, Ruby or Python, all have built-in JSON and HTTP 

libraries

 Size of delivered executables

 Only commercial implementations have the ability to tree-shake the Lisp 

image in order to deliver small (< 50mb) standalone executables.



Semantic Difficulties

 Plethora of equality functions

 A double-edged sword: careful selection of equality tests is critical for 

performance

 “Hash tables are not Lispy”

 Functional “build up a result” style of programming hampered by the lack of

associative, immutable structures

 fset and several other libraries offer such types, but they do not 

integrate directly with the language, because CL’s sequence abstraction is 

not extensible and its APIs were not designed with immutability in mind.

 fset’s types are not best-in-class (HAMT as empowered by x86 popcnt

instruction)

 In SBCL, the sequence type is extensible.



The Awesome
 Language is standardized: it has a freaking manual you can keep at your 

desk

 Relationship between Lisp code and machine code is direct

 (disassemble ‘(lambda (x) x))

 Carefully-written programs can approach performance of C

 Type hints and other metadata about the program can be communicated to the 

compiler with declaim and declare

 Numbers can be represented very efficiently as tagged pointers

 tagbody implements GOTO

 Linked lists aren’t the coolest data structure, but damn can you get a lot 

of mileage out of them!

 First-class structures and types with defstruct and defclass

 IRC communities #lisp and #sbcl on Freenode are exceedingly helpful

 It just has a great old-timey feel and is loads of fun to use and 

experiment with!


