
JACL: A Common Lisp for Developing Single-Page Web
Applications

Alan Dipert
alan@dipert.org

ABSTRACT
This paper introduces JavaScript-Assisted Common Lisp (JACL),
a new Web-browser based implementation of an extended subset
of Common Lisp. JACL — which is under active development and
approaching utility — is an effort to facilitate the use of Common
Lisp in overcoming the challenges of Single-page Web Application
(SPA) development. JACL promotes interactive development in the
Web browser environmentwith its asynchronous reader and Chrome
DevTools-based REPL client. JACL also includes an optimizing Lisp-
to-JavaScript compiler capable of generating competitively small
and efficient JavaScript.

CCS CONCEPTS
• Software and its engineering → Dynamic compilers; Run-
time environments.

KEYWORDS
Common Lisp, JavaScript, web applications
ACM Reference Format:
Alan Dipert. 2020. JACL: A Common Lisp for Developing Single-Page Web
Applications. In ELS ’20: European Lisp Symposium, April 27–28, 2020, Zürich,
Switzerland. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION
The demand for SPAs in the past decade has only grown, and users
and stakeholders continually expect larger and more sophisticated
applications. Unfortunately, large-scale development on the Web
browser platform presents a particular set of challenges that are not
easily overcome. Developers have responded to these challenges
by creating a widening variety of special-purpose programming
languages that compile to JavaScript [11, 27, 29]. Each new language
promotes one or more paradigms, application architectures, or
development workflows, and claims some advantage relative to the
status quo.

This paper presents one new such language, JavaScript-Assisted
Common Lisp (JACL), an implementation of an extended subset
of Common Lisp. The primary goal of the JACL project is to ease
SPA development by applying Common Lisp — a proven[6, 12, 14]
substrate for UI innovation — to the difficult challenges now faced

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ELS ’20, April 27–28, 2020, Zürich, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

by developers. The JACL language is envisioned as the means to
that goal.

Most popular, contemporary compile-to-JavaScript languages
are oriented around the affordances of static type checking; JACL,
as a Lisp, is not. Compared to similar languages that are Lisps, JACL
differentiates itself in two particular ways: with its approach to the
REPL, and with its compilation techniques.

2 RELATEDWORK
Many Lisps exist that either compile to JavaScript or are interpreted
by a JavaScript program. Here, only Lisps that have either demon-
strated industrial utility or that implement a significant subset of
Common Lisp are featured.

2.1 Parenscript
Released in 2005[1], Parenscript[17] was the first Common Lisp
compiler to target JavaScript. Parenscript is not bootstrapped and
its compiler is not written in JavaScript, and so it relies on a hosting
Common Lisp system for compilation. Only JavaScript types are
available to Parenscript programs at runtime, and so Parenscript is
more of a syntax frontend for JavaScript than it is an interactive
Lisp system. While Parenscript is not positioned to facilitate large-
scale SPA development, it remains a popular way to add dynamic
JavaScript-based behaviors to static Web sites.

2.2 SLip
SLip[2, 3] is arguably themost ambitious Common Lisp-on-JavaScript
system created to date, even though it intentionally diverges[4]
from Common Lisp in certain ways. It offers a stunning array of
powerful features including a self-hosting compiler, a full set of con-
trol operators, JavaScript Foreign-Function Interface (FFI), tail-call
optimization, green threads, and perhaps most impressively, a resi-
dent Emacs clone, Ymacs. SLip is based originally on the compiler
and bytecode interpreter presented in Chapter 23 of Paradigms of Ar-
tificial Intelligence Programming: Case studies in Common Lisp[22].

Lisp files may be batch-compiled to FASLs. FASLs represent code
as JavaScript code instead of as Lisp data. The browser is able to
load FASLs faster than SLip code because the JavaScript parser
in the browser is much faster than the SLip reader. Despite the
ability to produce FASLs, the interpreted nature of SLip precludes
the system from producing competitively fast or small application
deliverables. Consequently, SLip does not satisfy the JACL project
goal of facilitating large-scale industrial SPA development.

2.3 JSCL
Of existing Common Lisps, JSCL[23, 24] is the one aligned most
closely with the JACL project goal. Unlike Parenscript, JSCL is a
genuine Lisp system. And unlike SLip, JSCL compiles directly to
JavaScript instead of to an interpreted bytecode. It is self-hosting,

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ELS ’20, April 27–28, 2020, Zürich, Switzerland Alan Dipert

includes the major control operators, and integrates tightly with
JavaScript. JSCL includes a reader, compiler, and printer, and evalua-
tion is performed by the JavaScript eval() function. Between these,
a Read Eval Print Loop (REPL) is possible, and the JSCL distribution
includes an implementation of one.

2.3.1 Synchronous reader. JSCL supports reading from string-backed
pseudo-streams. Input streams from which characters may be syn-
chronously consumed are not an abstraction supported by JavaScript
in Web browsers. With a few obscure exceptions1, JavaScript pro-
grams may only receive input asynchronously. An error is signaled
if the end of a string-backed input stream is encountered before the
reader has finished reading a datum.

Because input strings may not contain partial data, the REPL
necessitates a “pre”-reader process that accumulates characters in
response to asynchronous input events, and invokes the reader
only once a complete form — as a string — has been accumulated.
Such a pre-reader can be found in the JSCL REPL implementation.
It handles standard syntax, but has the potential to be stymied by
extended syntax, such as that added by reader macros. As such,
the pre-reader is a separate, degenerate reader that limits what’s
capable of being read by the underlying, full-featured synchronous
reader.

2.3.2 Compiler organization. JSCL compilation is performed in
two stages:

• Conversion from Lisp to a JavaScript Abstract Syntax Tree
(AST) represented as S-expressions.

• Conversion from JavaScript AST to JavaScript strings. Some
code-size optimization of arithmetic expressions is also per-
formed in this stage.

The first stage, the conversion from Lisp to JavaScript Abstract
Syntax Trees (AST), is where the implementation of the Lisp spe-
cial forms in terms of JavaScript language constructs and runtime
support is performed. This conversion is done in a single pass
in which macro expansion, lexical analysis, and JavaScript AST
generation all occur. The lexical environment is maintained in a
dynamically-scoped variable as the compiler descends into Lisp
code and produces JavaScript AST.

Code for TAGBODY is generated in the first stage, and the gener-
ated code is much slower than comparable JavaScript code. Every
control transfer initiated by GO results in a JavaScript exception be-
ing thrown, which is an expensive operation. Since many Common
Lisp operators have implicit tagbodies, and since most other itera-
tion operators are expressed in terms of TAGBODY, this performance
problem pervades the JSCL system.

More efficient ways of implementing TAGBODY are not hard to
imagine, but the JSCL compiler does not amene itself to the imple-
mentation of this or other high-level optimizations, as JSCL lacks
a sufficiently expressive intermediate representation (IR). High-
level optimizations and transformations are important for a Lisp to
JavaScript compiler to perform, because they are exactly the kind
that a JavaScript optimizer could not later perform, provided only
JavaScript code.

1window.prompt() and window.confirm() are two JavaScript functions that may be
used to synchronously query the user for input.

2.4 ClojureScript
A discussion of industrial Lisp technology in the SPA setting would
be incomplete without mention of ClojureScript [9]. ClojureScript
is probably the most successful Lisp dialect for building SPAs by
number of commercial users [10].

ClojureScript targets JavaScript, and is a dialect of an earlier
language, Clojure[8], which targets Java Virtual Machine (JVM)
bytecode. The ClojureScript reader and macro systems were both
originally hosted in Clojure, in a manner similar to Parenscript.

Since its introduction[15], ClojureScript has heavily promoted
and prioritized the ability to produce high-performance deliverables.
It has always been capable of generating JavaScript deliverables
amenable to aggressive optimization by the Google Closure Com-
piler. In this respect, ClojureScript aligns closely with the JACL
project goal of competitive application performance. In fact, ex-
perience with, and admiration for, ClojureScript is the reason the
ability to produce high-performance deliverables is considered a
crucial capability of JACL.

Other than the fact that JACL is a Common Lisp and Clojure-
Script is not, the biggest difference between the two is that JACL
promotes a browser-based development environment with mini-
mal host-side tooling. ClojureScript, in contrast, promotes[21] a
development experience oriented around compilation performed
on the host.

3 DESIGN AND IMPLEMENTATION
From a design perspective, JACL is an effort to balance the require-
ments of an interactive and practical Lisp development environ-
ment with the constraints imposed by the Web browser platform.
JACL proposes several innovations with respect to previous work
in pursuit of this balance.

3.1 Asynchronous reader
The basis for interactive development in Lisp is undeniably the
REPL, but as the JSCL “pre-reader” demonstrates, even the direct
approach to this simple mechanism is hampered by the asynchro-
nous model of input imposed by JavaScript.[19]. Traditionally, Lisp
readers are implemented in environments with a blocking function
for obtaining input, like getc(1) on Unix. The blocking nature of
input consumption allows the reader to consume nested input recur-
sively, using the call stack to accumulate structures. In JavaScript,
input arrives asynchronously, and only when the call stack is empty.
To mitigate this difficulty, the JACL reader facility is completely
asynchronous. Conceptually, it is the JSCL REPL “pre-reader” taken
to its inevitable conclusion.

The JACL reader is implemented as a JavaScript class, Reader.
Reader instances are parameterized by an input source. One such
input source is the BufferedStream class. The input source asyn-
chronously notifies the reader instance when characters are avail-
able. The reader incrementally consumes these characters. Once
the reader has accumulated a Lisp datum, it notifies its subscribers
of the availability of the datum.

The JACL reader implementation makes extensive use of modern
JavaScript features to support asynchronous programming includ-
ing promises, iterators, async functions, async iterators, and the
await keyword. These features simplify the JACL implementation

JACL: A Common Lisp for Developing Single-Page Web Applications ELS ’20, April 27–28, 2020, Zürich, Switzerland

and aid its performance [18]. It is hoped that JACL will eventually
be written in itself, and that these features will be accessible from
Lisp, perhaps as a set of implementation-dependent declaration
specifiers available in DECLARE expressions.

The following example demonstrates, in JavaScript, the process
by which the JACL reader consumes characters and produces Lisp
objects. A BufferedStream and Reader are instantiated, sent char-
acters asynchronously, and then the resulting Lisp object is printed
to the JavaScript console.

(async () => {
let bs = new BufferedStream(),

rdr = new Reader(bs);

window.setTimeout(() => bs.write("1"), 1000);
window.setTimeout(() => bs.write("2"), 2000);
window.setTimeout(() => bs.write("3"), 3000);
window.setTimeout(() => bs.write(" "), 4000);

console.log(await rdr.read());
})();

In the preceding example, window.setTimeout() is used to en-
queue several JavaScript functions for execution after 1000, 2000,
3000, and 4000 milliseconds. Each enqueued function writes a char-
acter of input to the BufferedStream bs when invoked.

Before any enqueued function is invoked, execution proceeds to
the console.log call, but is suspended by the await keyword.

The await keyword expects a JavaScript Promise object on its
right side, and JavaScript execution remains suspended until the
Promise has “resolved”, or notified its subscribers that the pending
computation it represents has completed. rdr.read() is an async
function that returns such a Promise.

Once rdr has completed a form — in this case, the number 123,
after about 4000 milliseconds have elapsed — execution continues,
and 123 is printed to the JavaScript console.

The “read” portion of the JACL REPL is implemented by first in-
stantiating BufferedStream and Reader objects. Then, in an asyn-
chronous loop, objects are consumed from the Reader, analyzed,
compiled, and evaluated.

Concurrently, characters may be sent to the BufferedStream
instantiated by the REPL by calling the write() or writeEach()
methods of the BufferedaStream object. Neither character input
nor read object consumption impede other JavaScript operations,
so the JACL REPL is suitable for embedding in applications.

Because of the platform and implementation-dependent nature
of the JACL reader, JACL does not support Common Lisp input
streams, nor its standard READ and READ-FROM-STRING functions.
Standard interfaces for extending the reader, such as the
SET-MACRO-CHARACTER function, are not directly supported. How-
ever, the JACL reader does provide an implementation-specific way
to define reader macros.

3.2 Chrome DevTools REPL
A browser-based REPL facilitates experimentation with the lan-
guage by interested people, from the comfort of their Web browsers.
It’s also a useful debugging feature of a deployed application.

However, most developers already have a preferred text editor
and a REPL interaction workflow, and so it’s not within the JACL
project scope to build a resident IDE in the style of SLip. Even if a
resident IDE was a goal, the file system access restrictions imposed
by the browser would present significant challenges.

Instead, JACL offers an alternative development REPL approach
that requiresminimal host tooling: theDevTools-based REPL. Google
Chrome is capable of hosting a WebSocket-based debug server that
implements the DevTools Protocol [13]. DevTools Protocol clients
may then connect to the server and interact with open tabs, such
as by evaluating arbitrary JavaScript within the context of the tab.
JACL leverages the DevTools Protocol to deliver a command-line
REPL client that may be run on development machines. The work-
flow is the following:

(1) Run Google Chrome from the shell with the
–remote-debugging-port parameter.

(2) Navigate to the Web site hosting the JACL system you wish
to interact with.

(3) Run jacl-repl from the shell.
(4) Be presented with a Lisp prompt.
As a simple command-line application with a textual interface,

jacl-repl can be run in various contexts. For example, it could be
runwithin an Emacs “inferior-lisp” buffer, and then Lisp forms could
be sent from other Emacs buffers for evaluation in the REPL. It could
also be run as part of a build process that pipes Lisp sources over the
WebSocket for batch compilation. It is anticipated that additional
host-side tools that depend on jacl-client will be necessary in
the future to support loading source files in dependency order.

Unlike the pre-readers of SLip and JSCL, jacl-client is com-
pletely ignorant of Lisp syntax. jacl-client merely transports
characters between the host machine and the Lisp system and so is
not a pre-reader.

There are a few obvious ways the JACL REPL experience could
be improved. For example, jacl-repl is currently an R[25] script
requiring an R installation and the chromote[7] package. A stan-
dalone binary executable is imagined in the future in order to make
it easier for developers to start working on JACL projects. Addi-
tionally, JACL has yet to define a printer for its native types, or
an extensible print protocol. Object string representations are ob-
tained by calling the generic JavaScript toString()method, which
doesn’t always produce a representation that can be read back in.

3.3 Analyzing compiler
Unlike JSCL, the JACL compiler is organized to facilitate high-level
optimizations such as those that could support efficient compilation
of TAGBODY and other fundamental Common Lisp operators.

The first compiler pass expands macros and produces an AST.
The second compiler pass performs optimizations and produces a
new AST. The final pass produces JavaScript code. AST nodes are
represented by generic JavaScript objects with at least the following
keys:

• op: The name of the node, as a JavaScript string.
• env: An object of class Env that represents the lexical envi-
ronment of the node.

• parent: The parent of the node; this is null for the root.
• form: The original source data of the node, a Lisp datum.

ELS ’20, April 27–28, 2020, Zürich, Switzerland Alan Dipert

Nodes and Env objects are immutable by convention. Functions
are provided for modifying and merging these objects so as only
to produce new objects. This convention reduces the possibility
of optimization passes interfering with one another. It also eases
understanding the AST, since every AST node contains a copy of
all relevant context. As JavaScript objects, AST nodes are easily
introspected using the object inspector of the Web browser.

Currently, the Env object tracks evaluation context — one of
statement, expression, or return — lexical variables, and TAGBODY
tags. In the future, it will track the remaining aspects of the lexical
environment, such as lexical functions and macros.

3.3.1 Embedding JavaScript with JACL:%JS. Unlike JSCL or SLip,
the JACL compiler supports a special operator for constructing
fragments of JavaScript code, verbatim, from Lisp. The semantics
of this operator, JACL:%JS, are inspired by a similar feature of
ClojureScript, js*. For example, the following JACL code displays
the number 3 in an alert box:
(JACL:%JS "window.alert(~{})" 3)

The character sequence ~{} is distinct from any plausible JavaScript
syntax and so is used as placeholder syntax. There must be as many
placeholders as there are arguments to JACL:%JS.

3.3.2 Other interoperation support. In addition to JACL:%JS, the
JACL compiler currently supports three more special operators
for interacting with the host platform: JACL:%NEW, JACL:%DOT and
JACL:%CALL. These operators perform JavaScript object instantia-
tion, field access, and function calls, respectively. Since JACL func-
tions compile into JavaScript functions, JACL:%CALL is the basis for
FUNCALL in JACL, and for function calls generally.

JACL also supplies a convenience macro, JACL:\. or “the dot
macro” for performing a series of field accesses and method calls2
concisely. The dot macro takes direct inspiration from the ..macro
of Clojure. JACL:\. expands to zero or more nested JACL:%DOT or
JACL:%CALL forms. Here is an example of a JACL:\. form — equiv-
alent to the JavaScript expression (123).toString().length —
and its corresponding expansion:
(\. 123 (|toString|) |length|)
(%DOT (%CALL 123 |toString|) |length|)

Note that JavaScript identifiers are case sensitive, and so case-
preserving, pipe-delimited Lisp symbols must be used to refer to
JavaScript object field and method names. The readtable case of
the JACL reader cannot currently be modified. The dot macro also
recognizes Lisp or JavaScript strings as JavaScript identifiers.

3.3.3 TAGBODY compilation strategy. Consider the following Com-
mon Lisp program that decrements the local variable X 10 times:
(let ((x 10))

(tagbody
start
(when (zerop x) (go end))
(setq x (1- x))
(go start)
end))

2Strictly speaking, JavaScript “method calls” are normal function calls but with a
particular value of this.

JSCL, the existing Lisp closest to JACL, would compile the preceding
code into approximately3 the following JavaScript:
function Jump(id, label) {

this.id = id;
this.label = label;

}

var X = 10;
var id = [];
var label = 0;
LOOP: while (true) {

try {
switch(label) {

case 0:
if (X === 0) throw new Jump(id, 1);
X = X-1;
throw new Jump(id, 0);

case 1:
default:

break LOOP;
}

} catch (e) {
if (e instanceof Jump && e.id === id) {

label = e.label;
} else {

throw e;
}

}
}

The mechanism is ingenious. GO tags became switch labels, and
jumps became throw statements. The thrown objects are instances
of Jump. Each instance of Jump contains a destination label.

Unfortunately, in this scheme, every jump requires a JavaScript
exception to be thrown, severely penalizing TAGBODY as previously
discussed. Fortunately, a straightforward local jump optimization
can be applied that yields a tremendous performance benefit. Local
jump optimization is a known technique[28], but JACL is the first
Lisp targeting JavaScript to apply it.

In order to perform this optimization, the JACL compiler first
identifies local GOs in its analysis pass. These are GO nodes with
no intervening LAMBDA nodes4 between them and their respective,
lexically-enclosing TAGBODYs. Then, TAGBODYs are identified that
consist of only local GOs.

JavaScript generated for local GOs does not throw an exception,
but instead leverages the labeled form of the JavaScript continue[20]
statement to transfer control appropriately. JavaScript generated
for TAGBODYs that have been determined to consist only of local
jumps omits the try/catch block, saving on generated code size.

The following code is similar5 to that generated by the JACL
compiler. Cursory benchmarks A show JACL code runs several

3Actual JSCL output is not used because it includes type checks, generated variable
names, and other code that would obscure the relevant machinery.
4Note that LAMBDA doesn’t necessarily preclude local jump optimization if the LAMBDA
is inlined, but JACL currently does not inline functions.
5Once more, actual compiler output has been significantly modified and reformatted
for brevity.

JACL: A Common Lisp for Developing Single-Page Web Applications ELS ’20, April 27–28, 2020, Zürich, Switzerland

orders of magnitude faster than JSCL, and that JACL code is almost
as fast as the JavaScript statement while(X–):

var X = 10;
var label = 0;
LOOP: while (true) {

switch(label) {
case 0:

if (X === 0) {
label = 1;
continue LOOP;

}
X = X - 1;
label = 0;
continue LOOP;

case 1:
default:

break LOOP;
}

}

4 CONCLUSION
We introduced JACL, a new Common Lisp created to ease SPA
development. JACL is designed as an efficient, practical tool, with
the needs of industrial SPA developers in mind. JACL integrates
tightly with the Web browser platform and interoperates easily
with JavaScript. Compared to other browser-based Lisps, JACL
places a higher emphasis on the value of the REPL, and introduces
new techniques for integrating the REPL into the development
workflow.

5 FUTUREWORK
In order to be practical for application development, JACL must
support the creation of standalone executables. In the case of JACL,
these would be single JavaScript files that may be included in an
HTML page and are executed on page load. Fortunately, since JACL
development is image-based, JACL should support the traditional
approach of specifying a Lisp function entrypoint and dumping the
Lisp image to native (JavaScript) code. The SAVE-LISP-AND-DIE[26]
function in SBCL and the DELIVER[16] function in LispWorks are
two examples of this functionality in other implementations.

JACL should be able to perform rudimentary optimizations such
as global function and variable tree shaking[30] in order to reduce
the size of generated executables. In addition, JACL should make dy-
namic function and variable references in executables static, so that
third party tools like Google Closure Compiler[5] may optionally
be used to perform additional optimization.

Other than the ability to produce optimized standalone executa-
bles, many other design and implementation tasks remain, such
as support for special variables in lambda lists, EVAL-WHEN, macro
lambda lists, DECLARE et al, CLOS, various other data types, com-
piler macros, etc. The list of tasks is enormous, but it is anticipated
that these features can be implemented over time, in the order
demanded by application development.

6 ACKNOWLEDGMENTS
The author wishes to thankMicha Niskin, Bart Botta, Kevin Lynagh,
Lionel Henry, and Andy Keep for invaluable feedback on early
versions of this paper.

The author wishes to express particular thanks to Robert Strandh
not only for his feedback, but also for his guidance on the writing
process.

Finally, the author wishes to express special gratitude to his
beautiful wife, Sandra Dipert, for her encouragement and support.

REFERENCES
[1] Marco Baringer. 2005. Parenscript. Retrieved February 12, 2020 from

https://web.archive.org/web/20051122141019/http://blogs.bl0rg.net/netzstaub/
archives/000525.html

[2] Mihai Bazon. 2012-2018. Implementation notes. Retrieved February 12, 2020 from
http://lisperator.net/slip/impl

[3] Mihai Bazon. 2012-2018. SLip — a Lisp system in JavaScript. Retrieved February
12, 2020 from http://lisperator.net/slip/

[4] Mihai Bazon. 2012-2018. Versus Common Lisp. Retrieved February 12, 2020 from
http://lisperator.net/slip/vscl

[5] Michael Bolin. 2010. Closure: The Definitive Guide: Google Tools to Add Power to
Your JavaScript. O’Reilly Media, Sebastopol, CA, USA.

[6] Howard I. Cannon. 2007. Flavors: A non-hierarchical approach to object-
oriented programming. Retrieved February 12, 2020 from http://www.
softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf

[7] Winston Chang. [n.d.]. chromote: Headless Chrome Web Browser Interface. https:
//github.com/rstudio/chromote

[8] Cognitect, Inc. 2020. Clojure. Retrieved February 12, 2020 from https://clojure.org/
[9] Cognitect, Inc. 2020. ClojureScript. Retrieved February 12, 2020 from https:

//clojurescript.org/
[10] Cognitect, Inc. 2020. Companies. Retrieved

https://clojure.org/community/companies from https://clojurescript.org/
community/companies

[11] Evan Czaplicki. 2012. Elm: Concurrent FRP for Functional GUIs. Retrieved
February 12, 2020 from https://elm-lang.org/assets/papers/concurrent-frp.pdf

[12] B. A. Myers et al. 1990. Comprehensive Support for Graphical, Highly-Interactive
User Interfaces: The Garnet User Interface Development Environment. IEEE
Computer 23, 11 (Nov. 1990), 71–85. https://doi.org/10.1109/2.60882

[13] Google, Inc. 2020. Chrome DevTools. Retrieved February 12, 2020 from https:
//developers.google.com/web/tools/chrome-devtools

[14] Paul Hammant. 2013. Interface Builder’s Alternative Lisp timeline. Retrieved
February 20, 2020 from https://paulhammant.com/2013/03/28/interface-builders-
alternative-lisp-timeline/

[15] Rich Hickey. 2012. ClojureScript Release. Retrieved February 12, 2020 from
https://www.youtube.com/watch?v=tVooR-dF_Ag

[16] LispWorks Ltd. 2017. deliver. Retrieved February 21, 2020 from http://www.
lispworks.com/documentation/lw71/DV/html/delivery-220.htm

[17] Vladimir Sedach Marco Baringer, Henrik Hjelte. 2005-2019. Parenscript Reference
Manual. Retrieved February 12, 2020 from https://common-lisp.net/project/
parenscript/reference.html

[18] Benedikt Meurer Maya Lekova. 2018. Faster async functions and promises. Re-
trieved February 12, 2020 from https://v8.dev/blog/fast-async

[19] Mozilla, Inc. 2020. Concurrency model and the event loop. Retrieved February 22,
2020 from https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop

[20] Mozilla, Inc. 2020. label - JavaScript | MDN. Retrieved February 19,
2020 from https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Statements/label

[21] David Nolen. 2020. ClojureScript Quick Start. Retrieved February 12, 2020 from
https://clojurescript.org/guides/quick-start

[22] Peter Norvig. 1992. Paradigms of Artificial Intelligence Programming: Case studies
in Common Lisp. Morgan Kaufmann Publishers, San Francisco, CA, USA.

[23] David Vázquez Púa. 2018. Growing a Lisp compiler. Retrieved February 12, 2020
from https://www.youtube.com/watch?v=XT7JYPtWMd8

[24] David Vázquez Púa and contributors. [n.d.]. jscl-project/jscl. Retrieved February
12, 2020 from https://github.com/jscl-project/jscl/

[25] R Core Team. [n.d.]. R: A Language and Environment for Statistical Computing.
http://www.R-project.org/

[26] SBCL Project Contributors. 2020. SBCL 2.0.1 User Manual. Retrieved February
21, 2020 from http://www.sbcl.org/manual/

[27] Soma Somasegar. 2012. TypeScript: JavaScript Development at Application Scale.
Retrieved February 4, 2020 from https://web.archive.org/web/20121003001910/
http://blogs.msdn.com/b/somasegar/archive/2012/10/01/typescript-javascript-
development-at-application-scale.aspx

https://web.archive.org/web/20051122141019/http://blogs.bl0rg.net/netzstaub/archives/000525.html
https://web.archive.org/web/20051122141019/http://blogs.bl0rg.net/netzstaub/archives/000525.html
http://lisperator.net/slip/impl
http://lisperator.net/slip/
http://lisperator.net/slip/vscl
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf
https://github.com/rstudio/chromote
https://github.com/rstudio/chromote
https://clojure.org/
https://clojurescript.org/
https://clojurescript.org/
https://clojurescript.org/community/companies
https://clojurescript.org/community/companies
https://elm-lang.org/assets/papers/concurrent-frp.pdf
https://doi.org/10.1109/2.60882
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://paulhammant.com/2013/03/28/interface-builders-alternative-lisp-timeline/
https://paulhammant.com/2013/03/28/interface-builders-alternative-lisp-timeline/
https://www.youtube.com/watch?v=tVooR-dF_Ag
http://www.lispworks.com/documentation/lw71/DV/html/delivery-220.htm
http://www.lispworks.com/documentation/lw71/DV/html/delivery-220.htm
https://common-lisp.net/project/parenscript/reference.html
https://common-lisp.net/project/parenscript/reference.html
https://v8.dev/blog/fast-async
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://clojurescript.org/guides/quick-start
https://www.youtube.com/watch?v=XT7JYPtWMd8
https://github.com/jscl-project/jscl/
http://www.R-project.org/
http://www.sbcl.org/manual/
https://web.archive.org/web/20121003001910/http://blogs.msdn.com/b/somasegar/archive/2012/10/01/typescript-javascript-development-at-application-scale.aspx
https://web.archive.org/web/20121003001910/http://blogs.msdn.com/b/somasegar/archive/2012/10/01/typescript-javascript-development-at-application-scale.aspx
https://web.archive.org/web/20121003001910/http://blogs.msdn.com/b/somasegar/archive/2012/10/01/typescript-javascript-development-at-application-scale.aspx

ELS ’20, April 27–28, 2020, Zürich, Switzerland Alan Dipert

[28] Robert Strandh. 2020. compile-general-purpose-asts.lisp. Retrieved
February 21, 2020 from https://github.com/robert-strandh/SICL/blob/
2d322d3c7794eb4e89720b9a2fce42395a787376/Code/Cleavir2/AST-to-
HIR/compile-general-purpose-asts.lisp#L200-L303

[29] Wikipedia contributors. 2020. Reason (syntax extension for OCaml) —Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Reason_
(syntax_extension_for_OCaml)&oldid=940051580 [Online; accessed February 12,
2020].

[30] Wikipedia contributors. 2020. Tree shaking — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Tree_shaking&oldid=908332079
[Online; accessed February 22, 2020].

A TAGBODY PERFORMANCE BENCHMARKS
The following benchmark codewas run onGoogle Chrome 80.0.3987.116,
on Linux, using a computer with an Intel i7-3520M CPU. Times are
in milliseconds.
function Jump(id, label) {

this.id = id;
this.label = label;

}

function tagbody_unoptimized(X) {
var id = [];
var label = 0;
LOOP: while (true) {

try {
switch(label) {

case 0:
if (X === 0) throw new Jump(id, 1);
X = X - 1;
throw new Jump(id, 0);

case 1:
default:

break LOOP;
}

} catch (e) {
if (e instanceof Jump && e.id === id) {

label = e.label;
} else {

throw e;
}

}
}

}

function tagbody_optimized(X) {
var X = 10;
var label = 0;
LOOP: while (true) {
switch(label) {

case 0:
if (X === 0) {
label = 1;
continue LOOP;

}
X = X - 1;
label = 0;
continue LOOP;

case 1:

default:
break LOOP;

}
}

}

function baseline_js(X) {
while(X--);

}

var start = performance.now();
for (var i = 0; i < 1e6; i++) tagbody_unoptimized(10);
console.log("tagbody_unoptimized", performance.now() - start);
// tagbody_unoptimized 58994.43500000052

var start = performance.now();
for (var i = 0; i < 1e6; i++) tagbody_optimized(10);
console.log("tagbody_optimized", performance.now() - start);
// tagbody_optimized 23.61499999812804

var start = performance.now();
for (var i = 0; i < 1e6; i++) baseline_js(10);
console.log("baseline_js", performance.now() - start);
// baseline_js 15.055000003427267

https://github.com/robert-strandh/SICL/blob/2d322d3c7794eb4e89720b9a2fce42395a787376/Code/Cleavir2/AST-to-HIR/compile-general-purpose-asts.lisp#L200-L303
https://github.com/robert-strandh/SICL/blob/2d322d3c7794eb4e89720b9a2fce42395a787376/Code/Cleavir2/AST-to-HIR/compile-general-purpose-asts.lisp#L200-L303
https://github.com/robert-strandh/SICL/blob/2d322d3c7794eb4e89720b9a2fce42395a787376/Code/Cleavir2/AST-to-HIR/compile-general-purpose-asts.lisp#L200-L303
https://en.wikipedia.org/w/index.php?title=Reason_(syntax_extension_for_OCaml)&oldid=940051580
https://en.wikipedia.org/w/index.php?title=Reason_(syntax_extension_for_OCaml)&oldid=940051580
https://en.wikipedia.org/w/index.php?title=Tree_shaking&oldid=908332079

	Abstract
	1 Introduction
	2 Related Work
	2.1 Parenscript
	2.2 SLip
	2.3 JSCL
	2.4 ClojureScript

	3 Design and Implementation
	3.1 Asynchronous reader
	3.2 Chrome DevTools REPL
	3.3 Analyzing compiler

	4 Conclusion
	5 Future Work
	6 Acknowledgments
	References
	A Tagbody Performance Benchmarks

